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General Article

Psychologists in many fields face a dilemma. Whereas 
most researchers are aware that randomized experi-
ments are considered the “gold standard” for causal 
inference, manipulation of the independent variable of 
interest will often be unfeasible, unethical, or simply 
impossible. One can hardly assign couples to stay mar-
ried or get a divorce; nonetheless, one might be inter-
ested in the causal effect of divorce on well-being. One 
cannot randomly resettle individuals into different strata 
of society, but one might be concerned about the causal 
effects of social class on behavior. One cannot random-
ize children to different levels of adversity, yet one 
might care about the potential negative consequences 
of childhood adversity on health in adulthood. This 
article provides very general guidelines for researchers 
who are interested in any of the many research ques-
tions that require causal inferences to be made on the 
basis of observational data.

Researchers from different areas of psychology have 
chosen different strategies to cope with the weaknesses 
of observational data. To circumvent the issue alto-
gether, some researchers have implemented “surrogate 
interventions”: If the real-life cause of interest cannot 
be manipulated, there might be a proxy that can be 
randomized in the lab. For example, an influential study 
on the effects of social class on prosocial behavior 
included an experimental manipulation of perceived 
social class. Participants were asked to compare them-
selves with either the top or the bottom of the “social 
ladder,” so as to temporarily change their subjective 
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Abstract
Correlation does not imply causation; but often, observational data are the only option, even though the research 
question at hand involves causality. This article discusses causal inference based on observational data, introducing 
readers to graphical causal models that can provide a powerful tool for thinking more clearly about the interrelations 
between variables. Topics covered include the rationale behind the statistical control of third variables, common 
procedures for statistical control, and what can go wrong during their implementation. Certain types of third variables—
colliders and mediators—should not be controlled for because that can actually move the estimate of an association 
away from the value of the causal effect of interest. More subtle variations of such harmful control include using 
unrepresentative samples, which can undermine the validity of causal conclusions, and statistically controlling for 
mediators. Drawing valid causal inferences on the basis of observational data is not a mechanistic procedure but rather 
always depends on assumptions that require domain knowledge and that can be more or less plausible. However, this 
caveat holds not only for research based on observational data, but for all empirical research endeavors.
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assessment of their social class (Piff, Kraus, Côté, Cheng, 
& Keltner, 2010). Using such surrogates can result in 
valuable insights, but they are not a panacea as they 
come with a well-known trade-off (e.g., Cook & 
Campbell, 1979): Although they substantially improve 
confidence in the internal validity of a study (i.e., clear 
causal relationships can be established with only mini-
mal additional assumptions), they might substantially 
decrease the external validity; that is, it becomes uncer-
tain whether the finding says much about other situa-
tions, other operationalizations of the independent 
variable, or the world outside the lab in general. For 
example, how is the effect of being instructed to com-
pare yourself with the bottom of the social ladder related 
to the effect of being born with a silver spoon in your 
mouth? How is the effect of comparing yourself with the 
top of the ladder related to the effect of constantly hav-
ing to worry about how to pay your bills? These ques-
tions are nontrivial research topics on their own.

Researchers who instead decide to rely on observa-
tional data often attempt to deal with its weaknesses by 
cautiously avoiding causal language: They refer to “asso-
ciations,” “relationships,” or tentative “links” between 
variables instead of clear cause-effect relationships, and 
they usually add a general disclaimer (“Of course, as 
the data were only observational, future experiments 
are needed . . .”). But again, in many instances, this is 
not a satisfactory solution. Most substantive questions 
are concerned with causal effects, and, “as humans, we 
cannot avoid thinking in terms of causality” (Asendorpf, 
2012, p. 391). Carefully crafted language will not prevent 
readers—let alone the public—from jumping to causal 
conclusions, and many studies that are based on obser-
vational data will probably get published only because 
they suggest that they are able to provide information 
about meaningful causal effects.

Finally, many researchers have tried to bridge the 
gap between observational data and (more or less 
explicit) causal conclusions by statistically controlling 
for third variables. Alas, such attempts often lack proper 
justification: The choice of control variables is deter-
mined by norms in the domain and by the variables 
available in the data set. Often, the analysis follows the 
rationale that “more control” is always better than less. 
Models resulting from such an approach have been 
labeled “garbage-can regressions” (Achen, 2005) 
because the idea that the inclusion of a multitude of 
control variables will necessarily improve (and will not 
worsen) causal inference is a methodological urban 
legend at best (Spector & Brannick, 2011). In addition, 
even if the right variables are statistically included in 
the models, other issues (e.g., neglecting measurement 
error) can result in the wrong conclusions (Westfall & 
Yarkoni, 2016).

The purpose of this article is to provide psycholo-
gists with a primer to a more principled approach to 
making causal inferences on the basis of observational 
data. Such coherent frameworks (see, e.g., Morgan & 
Winship, 2015, for a comprehensive yet accessible 
introduction) are more common in social-science 
domains that rely more heavily on observational data 
(e.g., economics and sociology). Because of the nature 
of the research questions pursued in these fields, ran-
domized experiments are often not an option—thus, a 
systematic approach to make sense of observational 
data is needed.

In this article, I discuss how causal inferences based 
on observational data can be improved by the use of 
directed acyclic graphs (DAGs), which provide visual 
representations of causal assumptions. They were 
developed primarily by the computer scientist Judea 
Pearl (e.g., Pearl, 1995; see Pearl, Glymour, & Jewell, 
2016, for an introduction) and share many features with 
structural equation models (SEMs).1 DAGs offer an 
intuitive approach for thinking about causal structures. 
Even if one does not wish to completely adopt a com-
prehensive formal framework for causal inference, 
some basic knowledge of DAGs can be helpful for 
addressing a number of questions that are of interest 
to psychologists who work with observational data. 
What third variables need to be controlled for? Which 
third variables can be ignored? And in which situations 
will statistical control worsen causal inference?

The answers to these questions necessarily depend 
on assumptions about the causal web underlying the 
variables of interest. It is impossible to infer causation 
from correlation without background knowledge about 
the domain (e.g., Robins & Wasserman, 1999). However, 
the need to make certain assumptions should not be a 
reason to abandon observational research. In fact, 
experimental studies require assumptions as well—for 
example, experiments might take place in restricted 
laboratory settings, and generalizing results from such 
studies to everyday life will require assumptions as well. 
The critical point is thus not whether a research design 
hinges on additional assumptions, but which assump-
tions need to be made. Regardless of the research 
design, awareness and transparent communication of 
assumptions allows critical assessments of causal claims 
to be made and thus lays the foundation for productive 
scientific debates.

A Brief Introduction to Directed 
Acyclic Graphs

Assume that we are interested in the causal effect of 
educational attainment on income. To keep it simple, 
let us assume that educational attainment has only two 
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levels: college degree versus no college degree by age 
30. To establish temporal order, we measure income at 
age 40. We observe that individuals who had a college 
degree at age 30 have an average income of $1,500 per 
week, whereas those who did not have a degree make 
about $700. From this observation, we cannot conclude 
that getting a college degree causes weekly income to 
increase by $800. It is very likely that individuals who 
received a college degree differ from people who did 
not on many other variables, and these variables might 
also affect income. Potentially, these variables might 
even fully account for any difference in income between 
the two groups, rendering the effect of a college degree 
to be zero.

Such a situation is depicted in Figure 1, which shows 
a model in which the relationship between educational 
attainment and income is confounded by a common 
cause, intelligence. To keep this example simple, let us 
assume that intelligence is a stable trait that does not 
change from childhood to adulthood (later in this article, 
I discuss a more complex scenario). The DAG in Figure 
1 encodes causal assumptions. One is that intelligence, 
one variable2 in the model, has a causal effect on edu-
cational attainment, and a second is that intelligence 
also has a causal effect on income; these assumptions 
of causality are denoted by the arrows pointing away 
from intelligence to the other variables. Furthermore, 
an arrow points from educational attainment to income, 
capturing the assumption that educational attainment 
has a causal effect on income. This figure depicts the 
most minimalist version of a DAG. DAGs consist of 
nodes (variables) and arrows (also called directed 
edges) between these nodes, which reflect causal rela-
tionships. It is assumed that a direct experimental 
manipulation of a variable at which an arrow begins 
(e.g., a manipulation of educational attainment with 
intelligence held constant) would change the variable 
at the end of the arrow (e.g., income). (See the appendix 
for a glossary of common DAG terminology.)

One popular way to think about DAGs is to interpret 
them as nonparametric SEMs (Elwert, 2013), a comparison 

that highlights a central difference between DAGs and 
SEMs. Whereas SEMs encode assumptions regarding 
the form of the relationship between the variables 
(i.e., by default, arrows in SEMs indicate linear, addi-
tive relationships, unless indicated otherwise), an 
arrow in a DAG might reflect a relationship following 
any functional form (e.g., polynomial, exponential, 
sinusoidal, or step function). The two arrows pointing 
to the income node in Figure 1 indicate that income 
can be expressed as an arbitrary function of intelli-
gence and educational attainment, including interac-
tions between these two causes. In this sense, a DAG 
is qualitative: A → B means only that A causally affects 
B in some way.

Furthermore, in contrast to SEMs, DAGs allow only 
for single-headed arrows, which is why they are called 
directed graphs. Sometimes, there might be a need to 
indicate that two variables are noncausally associated 
because of some unspecified common cause, U. A 
double-headed arrow could be used to indicate such 
an association (i.e., A ↔ B), but this would just be an 
abbreviation of A ← U → B, which again contains only 
single-headed arrows.

Paths and elementary causal 
structures

From these two simple building blocks—nodes and 
arrows—one can visualize more complex situations and 
trace paths from variable to variable. To make this 
example a bit more interesting, in Figure 2 I have 
extended the DAG from Figure 1 by adding a new node, 
school grades, which are affected by intelligence and 
in turn affect educational attainment.

From this DAG, various paths can be discerned by 
traveling along arrows from node to node. In the sim-
plest case, a path leads just from one node to the next 
one; an example is the path intelligence →  income. 
Paths can also include multiple nodes. For example, 
intelligence and income are additionally connected by 
the paths intelligence →  educational attainment 

Educational Attainment Income

Intelligence

Fig. 1.  A simple directed acyclic graph depicting a causal model in which intelligence has 
a causal effect on both educational attainment and income, and educational attainment 
also has an effect on income.
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→  income and intelligence →  grades → educational 
attainment → income. A path can also travel against 
the direction indicated by the arrows, as, for example, 
does the following path connecting educational attain-
ment and income: educational attainment ← grades ← 
intelligence → income. Although such paths can 
become arbitrarily long and complex, they can be bro-
ken down into three elementary causal structures: 
chains, forks, and inverted forks (see also Elwert, 2013).

Chains have the structure A → B → C, for example, 
intelligence → educational attainment → income. 
Chains can transmit an association between the node 
at the beginning and the node at the end: If intelligence 
causally affects educational attainment, and educational 
attainment causally affects income, then intelligence 
and income can be correlated. Such an association 
reflects a genuine causal effect. In this chain, intelli-
gence causally influences income via educational 
attainment.

Forks have the structure A ← B → C, for example, 
educational attainment ← intelligence → income. A fork 
can transmit an association, but it is not causal. In isola-
tion, this fork indicates that educational attainment and 
income may be correlated because they share a common 
cause, intelligence. Forks are the causal structure most 
relevant for the phenomenon of confounding.

Inverted forks have the structure A → B ← C, for 
example, educational attainment → income ← intelli-
gence. An inverted fork does not transmit an association: 
If educational attainment and intelligence both affect 
income, this does not imply that they are in any way 
correlated. Inverted forks are relevant to the problem 
of collider bias, which I discuss later in this article.

These three elementary causal structures determine 
the features of longer paths. A path that consists only 
of chains, such as intelligence → grades → educational 
attainment → income, can transmit a causal association. 
Along such a chain, variables that are directly or indi-
rectly causally affected by a certain variable are called 
its descendants; conversely, variables that directly or 
indirectly affect a certain variable are considered its 
ancestors. For example, in this path, intelligence is an 

ancestor of grades, educational attainment, and income, 
and income is a descendant of grades.

A path that also contains forks, such as educational 
attainment ← grades ← intelligence → income, still 
transmits an association—but it is no longer a causal 
association because of the confounding variable (in this 
case, intelligence). And a path that contains an inverted 
fork is blocked: No association is transmitted. For exam-
ple, the path educational attainment → income ← intel-
ligence → grades does not transmit a correlation 
between educational attainment and grades.

No way back: acyclicity

DAGs are acyclic because they do not allow for cyclic 
paths in which variables become their own ancestors. A 
variable cannot causally affect itself; for example, in 
Figure 1, the direction of the path between intelligence 
and income cannot simply be reversed because this 
would result in a cyclic path (intelligence → educational 
attainment → income → intelligence). This may seem 
counterintuitive: Psychological systems often contain 
feedback loops, such as the reciprocal relationships in 
which intelligence influences education but education 
also influences intelligence. Such a feedback loop can 
be modeled in a DAG (to some extent) by taking the 
temporal order into account and adding nodes for 
repeated measures. For example, a DAG could be drawn 
to show that intelligence in early childhood causally 
influences educational attainment, which in turn influ-
ences intelligence in adulthood. Temporal resolution 
could be “magnified” even further and increased to 
annual, monthly, or even daily assessments of multiple 
variables, resulting in more and more nodes in the DAG.3

Confounding: The Bane of Observational 
Data

With an understanding of the central terminology and 
rules of DAGs, we are now equipped to approach 
observational data in a more systematic manner. The 
central problem of observational data is confounding, 

Educational Attainment Income

Intelligence

Grades

Fig. 2.  An extension of the causal model depicted in Figure 1. In this model, intelligence 
affects grades in school, which in turn affect educational attainment.
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that is, the presence of a common cause that lurks 
behind the potential cause of interest (the independent 
variable; in experimental settings, often called the treat-
ment) and the outcome of interest (the dependent vari-
able). Such a confounding influence can introduce what 
is often called a spurious correlation, which ought not 
to be confused with a causal effect.4 How can a DAG 
be used to figure out how to remove all such noncausal 
associations so that only the true causal effect remains?

To do that, one must make sure that the DAG includes 
everything that is relevant to the causal effect of inter-
est. For example, in theory, we can extend the simple 
DAG in Figure 2 in many different ways. Intelligence 
and grades are certainly not the only causes of educa-
tional attainment, and we might want to include addi-
tional variables that point to educational attainment or 
other nodes or add generic residuals to indicate that 
there are other unrelated causal influences as well as 
measurement error. But not all of these possible exten-
sions of the model are of interest if we plan to inves-
tigate the causal relationship between educational 
attainment and income. A variable that affects educa-
tional attainment but has no causal effect on any of the 
other variables in the DAG—either directly or indirectly 
(i.e., an effect mediated by other variables)—does not 
need to be included. Such idiosyncratic factors, includ-
ing uncorrelated measurement error, are usually not 
displayed, as they do not help in identifying the causal 
effect (Elwert, 2013). If we want to derive a valid causal 
conclusion, we need to build a causal DAG that is 
complete because it includes all common causes of all 
pairs of variables that are already included in the DAG 
(Spirtes, Glymour, & Scheines, 2000). That is, any addi-
tional variable that either directly or indirectly causally 
affects at least two variables already included in the 
DAG should be included.

After such a DAG is built, back-door paths can be 
discerned. Back-door paths are all paths that start with 
an arrow pointing to the independent variable and end 
with an arrow pointing to the dependent variable. In 
other words, back-door paths indicate that there might 
be a common factor affecting both the treatment and 
the outcome. In Figure 2, there are two such back-door 
paths between educational attainment and income: 
educational attainment ← grades ← intelligence → 
income and educational attainment ← intelligence → 
income. Back-door paths are problematic whenever 
they transmit an association. In this case, both back-
door paths consist of only chains and forks (i.e., there 
are no inverted forks, which would block any transmit-
ted association). Thus, these two back-door paths are 
open, and they can transmit a spurious association. The 
zero-order correlation between educational attainment 
and income is a mix of the true causal effect (educational 

attainment → income) of interest plus any noncausal 
association transmitted by the two back-door paths. To 
remove the undesirable noncausal association, we must 
block the two back-door paths.

Statistical Control: Blocking Back-Door 
Paths

The purpose of third-variable control is to block open 
back-door paths. If all back-door paths between the 
independent and dependent variables can be blocked, 
then the causal effect connecting the independent and 
dependent variables can be identified, even if the data 
are purely observational (see Pearl’s, 1993, back-door 
criterion).5 Such a causal effect would be considered 
identifiable, always under the assumption that the DAG 
captures the true underlying causal web. Notice that 
the assumption that one has correctly captured the 
causal web and successfully blocked all back-door 
paths is in most cases a very strong one, because it 
posits that no relevant variables have been omitted from 
the causal graph. Whether this is plausible or not needs 
to be evaluated on a case-by-case basis.

A back-door path can be blocked by “cutting” the 
transmission of association at any point in the path by 
statistically controlling a node. Take, for example, the 
noncausal path educational attainment ← grades ← 
intelligence → income. We could, for example, control 
for grades. This would effectively block this back-door 
path, and it would no longer be able to transmit a 
noncausal association. However, we could also control 
for intelligence. This would again cut the transmission 
of this specific back-door path, but at the same time, it 
would also block the transmission of the second back-
door path, educational attainment ← intelligence → 
income. If the DAG in Figure 2 correctly captured the 
underlying causal web, controlling for intelligence 
would be sufficient to identify the causal effect of edu-
cational attainment on income because it would block 
all back-door paths.

Various practices make it possible to control for 
nodes in a DAG and thus block back-door paths. 
Although these procedures might appear quite different 
from each other (i.e., they require running different 
statistical procedures), they serve the same purpose. In 
any case, if one wants to control for a certain variable, 
one must have measured it.

Even if the DAG correctly captures the underlying 
causal model, if the back-door paths that should be 
blocked are correctly determined, and if all the vari-
ables necessary to block all back-doors are measured, 
a lot can still go wrong during the actual estimation of 
the effect of interest. Qualitative causal identification 
and the subsequent quantitative (usually parametric) 
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estimation of the identified effect are two distinct prob-
lems (Elwert, 2013): The right variables can be con-
trolled for, but this can be done in the wrong way, as 
I discuss later.

How to control for a variable

Stratified analysis.  In some cases, it might be possi-
ble to fully stratify the sample to control for confounders. 
For example, consider controlling for biological sex. 
Because this variable is categorical, the sample can be 
split into sex-homogeneous groups, analyses can be run 
within these groups, and the estimates from these analy-
ses can be combined into an overall estimate. These 
steps would guarantee that effects of sex could not pro-
vide an alternative explanation for the findings because, 
for example, women have been compared only with 
other women. This analytic approach might be appealing 
because it is highly transparent. However, stratification 
becomes unfeasible if the third variable has many levels, 
if it is continuous, or if multiple third variables and their 
interactions need to be taken into account simultane-
ously. In such cases, other options for statistical control 
might need to be considered.

Including third variables in regression models.  A 
widespread approach in the social sciences is to use 
multiple regression models to achieve statistical control.6 
The dependent variable can be regressed on both the 
independent variable and the covariate to “control for” 
the effects of the covariate and thus to potentially block 
back-door paths.

In the standard case, psychologists run models in 
which linear relationships are assumed without explicit 
justification. However, this approach does not guarantee 
adequate adjustment for the covariate. For example, if 
the effects of the covariate on the dependent and inde-
pendent variables both follow a quadratic trend, linear 
control might leave residual confounding between the 
independent and dependent variables. Both the covari-
ate and the covariate raised to the second power would 
need to be controlled for to properly remove the influ-
ence of the covariate in such a scenario. This point also 
applies to the widespread practice of “controlling for 
age”: Simply including age in a linear regression model 
will adequately adjust for age only if the age trends that 
need to be controlled for are approximately linear; in 
other cases, the statistical models might need to be 
refined (e.g., by including higher-order polynomials). 
Similarly, if covariates have interactive effects, these 
interactions must be considered in the model.

Matching.  In many cases, there might be a need to con-
trol for not only a single third variable but for multiple 

ones. Furthermore, one might want to control for third 
variables in a fully nonparametric fashion, that is, without 
assuming specific functional forms for their effects. 
Matching is one way to approach such a situation. Differ-
ent matching methods exist, but propensity-score match-
ing is particularly popular in the social sciences. The use 
of propensity scores for matching is controversial, and 
critics have indicated that other procedures might be 
preferable (King & Nielsen, 2016). Nonetheless, because 
of the popularity of propensity-score matching, and 
because the fundamental rationale of matching appro
aches is independent of the specific method used, I focus 
here on the example of a study that used propensity-
score matching.

Jackson, Thoemmes, Jonkmann, Lüdtke, and Traut-
wein (2012) were interested in the effects of military 
training (in comparison with civilian community ser-
vice) on personality. Young men who choose to enter 
the military are most likely different from their civilian 
peers with respect to personality even before they enter 
the military and also differ from their civilian peers on 
a number of other background variables. Including all 
of these variables in a regression model could lead to 
estimation issues and result in an unwieldy model. Fur-
thermore, such an approach would not provide an 
actual model of who chooses military training, which 
might be of interest in itself. Therefore, in their study, 
Jackson et al. used propensity-score matching.

First, they analyzed the covariates as predictors of 
the probability of entering the military. For each indi-
vidual, they obtained a single number, a propensity 
score, that indicated how “typical” that person was of 
somebody joining the military. There were some indi-
viduals with high propensity scores who did not join 
the military, as well as some individuals with very low 
propensity scores who joined the military nonetheless. 
Subsequently, matched groups were created: For every 
individual with a certain propensity score who joined 
the military, one individual with the same (or a similar) 
propensity score who instead chose civilian community 
service was included in a control group. Under ideal-
ized conditions, this procedure would guarantee that 
the two resulting groups (i.e., military vs. civilian ser-
vice) were balanced with respect to all control variables 
that were used to generate the propensity scores. Thus, 
these variables could no longer be the cause of any 
differences between the two groups being compared, 
and a large number of potentially confounding back-
door paths would be blocked.

Such matching procedures serve the same purpose 
as the more common approach of including control 
variables. Whereas propensity scores might, depending 
on the circumstances, have certain advantages for esti-
mating an effect, they do not change anything about 
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the specifics of causal identification: If an important 
confounder is omitted, or if variables that should not 
be included are included (Sjölander, 2009), propensity 
scores fail to properly identify the causal effect, just as 
other methods of statistical adjustment do. In addition, 
one must again consider whether the model properly 
captures the effects of the covariates (e.g., whether the 
model underlying the propensity scores properly cap-
tures the relationships between background character-
istics and the propensity to join the military).

Measurement error in confounding 
variables

Measurement error can affect all methods of statistical 
control. For example, intelligence—the confounding 
variable in Figures 1 and 2—cannot be measured per-
fectly. Thus, the statistical adjustment for intelligence is 
likely not able to completely remove its confounding 
influence, and the effect of educational attainment on 
income might be mistakenly assumed to be stronger 
than it actually is, as a result of residual confounding. 
The same problem holds for propensity-score matching 
if the scores have been based on variables that are 
affected by measurement error.

Westfall and Yarkoni (2016) assessed how the false 
positive rate for an effect is affected by measurement 
error of covariates that are being controlled for. It is 
worrisome that the false positive rate can reach very 
high levels, approaching almost 100%. In a worst-case 
scenario, applied to our example, we would almost 
always conclude that there is a significant effect of 
educational attainment on income after intelligence is 
controlled for, even if the association between 

educational attainment and income could actually be 
completely attributed to the confounder, intelligence. 
Somewhat counterintuitively, the false positive rate 
increases when sample sizes are large. A latent-variable 
approach in which the measurement error is explicitly 
represented in an SEM can be used to address this 
problem and reduce the rate of false positives; however, 
under realistic conditions, hundreds to thousands of 
participants might be required to achieve an acceptable 
level of statistical power (see Westfall & Yarkoni, 2016, 
for details).

Genetic Confounding and Control by 
Design

One source of potentially spurious associations that has 
perhaps been underappreciated in psychology is 
genetic confounding (e.g., between parents and their 
offspring). Assume that children who were rarely held 
and cuddled by their mothers are observed to be 
depressed as adults.7 Before one can conclude that 
being raised by a cold, distant mother causes depres-
sion, it is important to consider potential back-door 
paths (see the DAG in Fig. 3). Mothers who are cold 
and distant might be so because of a certain genetic 
predisposition to depressiveness. A child is genetically 
similar to his or her mother and, thus, might inherit this 
predisposition, which could result in depression later 
in life.

The knowledge that all traits are to some extent heri-
table has consequences for the ability to draw causal 
inferences. As Turkheimer (2000) noted, “It is no longer 
possible to interpret correlations among biologically 
related family members as prima facie evidence for 

Mother’s Depressiveness Child’s Depressiveness

Maternal Behavior

Mother’s Genetic Predisposition Child’s Genetic Predisposition

Fig. 3.  A directed acyclic graph depicting a causal model in which the link between being 
raised by a cold, distant mother and having depression later in life has a genetic explana-
tion. According to this model, mothers who are genetically prone to depression may pass 
this genetic vulnerability on to their children, who in turn may experience similar prob-
lems later in life. In addition, mothers’ genetic predisposition to depression may result in 
cold, distant caregiving. In this model, there is no causal effect of mothers’ behavior on 
their children’s later depressiveness; any observed association between these variables is 
attributed to genetic confounding.
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sociocultural causal mechanisms” (p. 162). To figure out 
whether mothers’ displays of affection causally influence 
their children’s later depressiveness, one must block the 
back-door path connecting mothers’ behavior to their 
children’s depressiveness via genetic predispositions.

The genetic back-door path could be blocked in 
different ways. For example, assuming that Figure 3 
depicts the correct causal model, measuring and con-
trolling for mothers’ depressiveness would remove any 
spurious association.

However, in this case, an alternative to statistical 
adjustment is available: control by design. For example, 
the path between maternal and offspring genes could 
be blocked by sampling only adopted children, in 
which case there would be no link between the genetic 
dispositions of mothers and their offspring.8 Another 
potentially powerful solution makes use of individuals 
who are matched on a wide range of variables: twins.

Monozygotic twins are of special interest for causal 
inference, even if a researcher is not interested in genet-
ics at all. They are matched with respect to both their 
genetic predispositions and a wide range of shared 
family-background characteristics. Thus, they provide 
an attractive way to test causal claims. If a certain asso-
ciation is found within monozygotic twin pairs, it can-
not be attributed to confounding by genes or shared 
family background because all these covariates have 
been controlled for by the design.

For example, Turkheimer and Harden (2014) inves-
tigated whether religiosity has a causal effect on delin-
quency and found a negative correlation when they 
simply correlated the variables across their whole sam-
ple. Although a causal effect might seem plausible—
many religions try to encourage ethical behavior and 
are embedded in supportive social communities—con-
founders such as family-background characteristics 
could provide an alternative explanation. Turkheimer 
and Harden thus analyzed the association between reli-
giosity and delinquency within monozygotic pairs of 
twins and found that the association disappeared: The 
more religious twin was not more (or less) likely to 
become delinquent than his or her twin. This finding 
challenges the interpretation that there might be a 
causal effect. If religiosity actually affected delinquency, 
there should have been an association even after family 
background and genes were controlled for.

Other “lucky accidents” and specific situations can 
also enable research designs that control for a wide 
range of potential confounders. Under ideal conditions, 
such designs can render additional post hoc statistical 
control unnecessary. These natural experiments consti-
tute an interesting intermediate case between ordinary 
observational studies and randomized experiments. 

Such design-based approaches to causal inference are 
popular in economics because they often require sub-
stantially fewer assumptions than approaches that rely 
exclusively on third-variable control. Angrist and 
Pischke (2010) even suggested that design-based 
approaches to causal inference have spurred a “credibil-
ity revolution” in empirical microeconomics. Dunning’s 
(2012) excellent introduction to natural experiments 
(including, e.g., regression-discontinuity designs and use 
of instrumental variables) extensively discusses potential 
trade-offs in comparison with other research designs.

Learning to Let Go: When Statistical 
Control Hurts

In certain fields, it has become common practice to 
include as many covariates as possible—to the point 
where authors imply or claim that they have additional 
confidence in their findings because, for example, their 
study “uses more control variables than previous stud-
ies” did (Tiefenbach & Kohlbacher, 2015, p. 85). In 
many cases, a failure to control for important confound-
ers will indeed undermine the conclusions, but it is not 
true that simply adding more covariates will always 
improve the estimate of a causal effect. There are two 
types of variables that researchers should not control 
for without taking into account potential negative side 
effects: colliders and mediators. Whereas confounders 
causally affect the independent variable of interest, col-
liders and mediators are causally affected by the inde-
pendent variable. Hence, they are also referred to as 
posttreatment variables. A solid rule of thumb is that 
researchers should not control for such posttreatment 
variables (Rosenbaum, 1984; Rubin, 1974). In this sec-
tion, I explain why.

Conditioning on a collider can 
introduce spurious associations

A collider for a certain pair of variables is any variable 
that is causally influenced by both of them. Controlling 
for, or conditioning analysis on, such a variable (or any 
of its descendants) can introduce a spurious (i.e., non-
causal) association between its causes. In DAG termi-
nology, a collider is the variable in the middle of an 
inverted fork, for example, variable B in A → B ← C. 
The collider variable normally blocks the path, but 
when one controls for it, a spurious association between 
A and C can arise. This might open up a noncausal path 
between the independent variable and the dependent 
variable of interest. In recent years, this potential source 
of bias has been pointed out in a variety of research 
fields, such as epidemiology (Greenland, 2003), 



Graphical Models for Observational Data	 35

personality psychology (Lee, 2012), and genetics 
(Munafò, Tilling, Taylor, Evans, & Smith, 2017).

Imagine that we are interested in whether the meth-
odological rigor of a scientific study affects its innova-
tiveness. Such an association could go either way: 
Methodological rigor might “tie” the hands of research-
ers, leading to less original research designs; but meth-
odological rigor might also require researchers to come 
up with creative solutions for addressing methodologi-
cal problems. For this thought experiment, let us 
assume that there is actually no causal effect of meth-
odological rigor on innovativeness.

To investigate the association between methodologi-
cal rigor and innovativeness, we consider all psycho-
logical studies that have been published. Say we notice 
that among these studies, there is a sizable negative 
association: Studies higher in methodological rigor are 
less innovative and vice versa. Next, we realize that 
publication bias might be an issue, so we decide to 
conduct a follow-up study on all psychological studies 
that have not been published.9 In this follow-up study, 
we again find a sizable negative association.

By assessing published and unpublished studies 
separately, we have stratified our analyses by publica-
tion status; in other words, we have conditioned our 
analyses on publication. However, both methodological 
rigor and innovativeness are likely to causally affect 
publication status. In the simplest case, both have a 
positive effect: With increasing rigor, the likelihood of 
publication increases; with increasing innovativeness, 
the likelihood of publication increases. Thus, publica-
tion status is a collider (see Fig. 4). Controlling for this 
collider variable biases the estimate of the effect of 
methodological rigor on innovativeness and, in this 
thought experiment, introduces a negative association 
where no causal effect exists.

Collider bias seems less intuitive than spurious asso-
ciations caused by confounders. However, consider 
what the body of published studies looks like: There 

are studies that are both rigorous and innovative, but 
such studies are likely rare if the two characteristics are 
uncorrelated. There are also studies that met the pub-
lication threshold thanks to high methodological rigor 
(despite low innovativeness) and studies that met the 
publication threshold thanks to high innovativeness 
(despite low rigor). Studies that are low in both rigor 
and innovativeness do not end up in this analysis, as 
they simply never got published. Thus, looking at all 
published studies (i.e., conditioning the analysis on 
publication) results in a negative correlation between 
innovativeness and rigor, giving the impression of a 
trade-off: Studies tend to be either rigorous or innova-
tive. Similarly, among the unpublished studies, we 
observe some studies that are low on both dimensions 
(but such studies are rare if the characteristics are 
uncorrelated) as well as studies that are low on only 
one of the dimensions, but there are not many studies 
that are high on both dimensions because these ended 
up getting published more frequently. Again, this results 
in a negative association between methodological rigor 
and innovativeness, conditional on nonpublication.

However, in this thought experiment, there is no asso-
ciation between methodological rigor and innovativeness 
if all studies—published and unpublished—are consid-
ered simultaneously without statistical control for pub-
lication status. The spurious negative correlation emerges 
only when the joint outcome of the two variables of 
interest is controlled for. This observation generalizes to 
similar situations in which selection into a group is based 
on multiple desirable features: Group membership is a 
collider variable, and conditioning analysis on it will 
introduce or exaggerate trade-offs between desirable 
features. For example, people might notice that there is 
a negative correlation between attractiveness and intel-
ligence among their former romantic partners. However, 
dating somebody is a collider of multiple causes of 
attraction, and, thus, it would be invalid to conclude that 
all potential romantic partners are either attractive or 

Methodological Rigor

Innovativeness

Publication of Study?

Fig. 4.  A directed acyclic graph depicting the causal model in the thought experiment 
on the effect of methodological rigor on the innovativeness of research. According to 
this model, both methodological rigor and innovativeness affect whether a study will be 
published or not. Thus, publication status is a collider variable, and controlling for it (e.g., 
by looking only at published studies) can potentially bias the estimate of the relationship 
between methodological rigor and innovativeness.
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intelligent. The partner-selection procedure could have 
introduced a spurious correlation, because a person is 
relatively unlikely to date somebody who is low on both 
dimensions (because of lack of interest) and also rela-
tively unlikely to end up dating somebody who is high 
on both dimensions (because such people are simply 
rare). Thus, the spurious correlation gives the impression 
of a trade-off (dating partners are either attractive or 
intelligent, but not both).

To return to the thought experiment displayed in 
Figure 4, the solution to the collider problem seems 
straightforward. If we realize that publication is a col-
lider, we can decide to run the analysis without control-
ling for this variable. By extension, we should also not 
control for descendants of the collider variable. For 
example, the publication of a study might have a causal 
effect on whether or not popular media report about 
the findings. If we look only at studies that have been 
covered by popular media—that is, if we condition our 
analysis on this descendant of the collider—we might 
observe the same spurious negative association between 
methodological rigor and innovativeness.

Avoiding collider bias requires two steps. First, one 
must be aware of the collider variable, and second, one 
must be able to run analyses that are not conditional 
on the collider (e.g., in our thought experiment, we 
must include both published and unpublished studies). 
Outside of thought experiments, one might often be 
unaware of collider variables or collect data in such a 
way that collider bias is built in.

Variations on the theme of collider 
bias

Collider bias that results from the sampling procedure 
(and not from, e.g., the inclusion of inadequate covari-
ates) has also been labeled endogenous selection bias. 
Elwert and Winship (2014) provided a succinct sum-
mary of the many ways in which endogenous selection 
bias can arise. In the following, I briefly illustrate this 

form of collider bias with examples that might be rel-
evant to psychologists.

Nonresponse bias.  Nonresponse bias occurs if, for 
example, a researcher analyzes only completed question-
naires, and the variables of interest are associated with 
questionnaire completion. Assume that we are interested 
in the association between grit and intelligence, and our 
assessment ends up being very burdensome. Both grit 
and intelligence make it easier for respondents to push 
through and complete the assessment. Questionnaire 
completion is thus a collider between grit and intelli-
gence. For example, although there might be no associa-
tion between grit and intelligence in the population, we 
might find a spurious negative association if we analyze 
only completed questionnaires. That is, completers low 
on intelligence may have compensated with their high 
levels of grit, completers low on grit may have compen-
sated with their high levels of intelligence, and invited 
participants who were low on both variables may have 
been less likely to finish the assessment and thus be 
underrepresented in the analyzed sample.

Attrition bias.  Assume that we are conducting a longi-
tudinal study and are interested in the effects of health 
problems on work satisfaction. We assessed work satis-
faction at a later point in time, which supposedly gives us 
confidence in the direction of the causal flow. However, 
over time, respondents inevitably dropped out of the 
study (e.g., they moved away, could not be found, were 
no longer willing to participate), and this attrition was 
likely selective. Some respondents might have left the 
study because of health problems; others might have 
dropped out because their workplace was too stressful 
(see Fig. 5 for a DAG depicting this scenario). Now, 
assume that we analyze data from only those respon-
dents who remained in our sample.

If only the respondents remaining in the panel are 
included in the analysis, spurious associations between 
all causes of attrition can arise, and they might open 

Health Problems

Stressful Workplace

Attrition Work Satisfaction

Fig. 5.  A directed acyclic graph depicting the causal model of the thought experiment on 
the effect of health problems on work satisfaction. In this model, attrition is causally affected 
by both health problems and having a stressful workplace. If analyses include only the 
respondents who remained in the sample, they are conditioned on a collider that poten-
tially induces a spurious association between health problems and a stressful workplace. 
This association opens a back-door path that potentially introduces a noncausal association 
between health problems and work satisfaction.
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up a back-door path between the variables of interest. 
In this example, attrition could introduce a spurious 
association between health problems and a stressful 
workplace. Both health problems and a stressful work-
place likely led to attrition; respondents with health 
problems might have remained in the study if they had 
low-stress jobs, and respondents with a stressful work-
place might have remained in the study if they were in 
particularly robust health. Assuming that there is a 
negative effect of health problems on work satisfaction, 
the strength of this association would be underesti-
mated if only the final sample is analyzed because the 
respondents with greater health problems were more 
likely to work in low-stress workplaces, which are gen-
erally more likely to leave individuals satisfied.

Related issues: missingness and 
representativity

Thoughts about endogenous selection bias quite natu-
rally lead to consideration of certain problems that nor-
mally are not framed as concerns for causal inference. 
One such problem is missing data. Nonresponse and 
attrition bias lead to missing data, and these missing data 
must be handled properly if the goal is to draw valid 
causal conclusions on the basis of observational data. 
Schafer and Graham (2002) have provided an introduc-
tion to the management of missing data for psychologists. 
Thoemmes and Mohan (2015) used DAGs based on for-
malizations by Mohan, Pearl, and Tian (2013) to provide 
visual representations of missing-data scenarios.

Another problem related to endogenous selection 
bias is nonrepresentativeness of samples (i.e., samples 
that do not accurately reflect the underlying population 
about which the researchers want to make statements). 
For example, if a researcher investigates only college 
students, endogenous selection bias is introduced 
between all variables that causally affect whether or 
not somebody becomes a college student (e.g., socio-
economic status, cognitive abilities, attitudes, parents’ 
characteristics).

Controlling for mediators: removing 
the association of interest

Overcontrol bias is another example of statistical con-
trol hurting instead of helping: If mediating variables 
are controlled for, the very processes of interest are 
controlled away. This point can be illustrated by return-
ing to the example in Figure 1 and additionally assum-
ing that educational attainment has an influence on 
intelligence in adulthood. Although this might still seem 
like a grossly oversimplified model of reality, it results 
in considerably more complex considerations. In addi-
tion, let us incorporate a variable labeled U (see Fig. 
6). Although it is possible to come up with plausible 
ideas about what U stands for (i.e., some variable that 
affects both adult intelligence and income, potentially 
something unobserved), let us simply leave it unspeci-
fied here, as conceptual considerations derived from a 
DAG do not depend on the concrete variables but 
depend only on the underlying abstract causal web.

Educational Attainment Income

Childhood Intelligence

Adult Intelligence
U

Fig. 6.  A directed acyclic graph extending the causal model in Figure 1 by adding intel-
ligence in adulthood and an unknown variable labeled U. In this model, intelligence in 
childhood confounds the association between educational attainment and income, but at 
the same time, intelligence in adulthood is a mediator of the effect of educational attain-
ment on income. In addition, intelligence in adulthood and income are confounded by U.
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Again, childhood intelligence is a confounder that 
needs to be controlled for. However, the question is 
whether we should or should not control for intelli-
gence in adulthood. Adult intelligence is a mediator of 
the effects of educational attainment on income; it is a 
node on a causal pathway between those variables. If 
we were able to randomly assign participants to differ-
ent educational paths, this manipulation would also 
affect their intelligence, which in turn would affect their 
income. Controlling for adult intelligence would block 
this genuinely causal pathway, and we would likely 
underestimate the positive payoff of getting a college edu-
cation. If one is interested in the magnitude of a causal 
effect, one should not control for mediating variables (i.e., 
the mechanisms driving the effect). By extension, one 
should not control for any descendant of a mediating 
variable. Consider, for example, what we should do if we 
add chess performance in adulthood as an outcome of 
adult intelligence in our model. Chess performance is a 
noisy proxy for intelligence, and controlling for it will 
remove some of the variation in adult intelligence that is 
caused by the independent variable of interest (i.e., edu-
cational attainment). Thus, we should not control for this 
descendant of the mediating mechanism.

In some cases, researchers might actually be inter-
ested in the effect of an independent variable on a 
dependent variable after accounting for the effect of a 
mediating variable. This is a common goal of mediation 
analysis. Both old and newer common approaches to 
estimating the remaining (direct) effect after accounting 
for a mediator (e.g., Baron & Kenny, 1986; Hayes, 2009) 
rely on statistical control of the mediating variable, but 
such approaches can introduce endogenous selection 
bias (Elwert & Winship, 2014).

In Figure 6, adult intelligence is a collider with 
respect to educational attainment and U. As long as 
adult intelligence is not controlled for, U is unproblem-
atic: It affects the outcome variable (i.e., income), but 
it does not causally affect the independent variable (i.e., 
educational attainment); thus, U is not a confounder of 
the effect of interest and can simply be ignored. How-
ever, if adult intelligence is controlled for, a noncausal 
association between its two causes, U and educational 
attainment, is introduced (i.e., educational attainment 
↔ U). Now, a back-door path, educational attainment 
↔ U → income, has been opened, and it potentially 
introduces a noncausal association. If the goal is to 
correctly estimate the direct effect of a college degree 
on income, all back-door paths opened by condition-
ing the analysis on the mediating variable must be 
blocked.

Maybe somewhat surprisingly, this problem of medi-
ation analysis also applies to experimental studies 
unless the mediating variable itself was randomly 

assigned. Randomized assignment of the independent 
variable rules out back-door paths between the inde-
pendent variable and dependent variable, but back-
door paths between the mediator and the dependent 
variable remain unaffected. In such a study, estimating 
the direct effect by controlling for the mediating vari-
able can lead to biased estimates. In offering recom-
mendations for experimental research programs, 
Bullock, Green, and Ha (2010) highlighted that uncov-
ering a mediating mechanism might be much harder 
than most social scientists realize.

Conclusion: Making Causal Inferences 
on the Basis of Correlational Data Is 
Very Hard

To summarize, the practice of making causal inferences 
on the basis of observational data depends crucially on 
awareness of potential confounders and meaningful 
statistical control (or noncontrol) that takes into account 
estimation issues such as nonlinear confounding and 
measurement error. Back-door paths must be considered 
before data are collected to make sure that all relevant 
variables are measured. In addition, variables that 
should not be controlled for (i.e., colliders and media-
tors) need to be considered. This might require careful 
planning before data collection begins because 
researchers must consider how sample recruitment 
might result in endogenous selection bias, which threat-
ens the validity of any conclusions drawn.

In reality, researchers may often end up with data 
that do not contain reliable measures of central con-
founders—because a back-door path was not consid-
ered before the data were collected (or before comments 
were made by peer reviewers), because somebody else 
collected the data (e.g., they came from nationally rep-
resentative panel or survey studies), or because the 
confounder is some unobservable factor that could not 
be measured with available methods. In such a situa-
tion, thorough consideration of the causal web underly-
ing the variables can lead to the conclusion that the 
data do not warrant causal claims.

In addition, in a messy psychological reality, causal 
graphs quickly become substantially more complex 
than the illustrations included in this article. For exam-
ple, in certain constellations of variables, controlling 
for a variable might reduce one type of bias (because 
the variable is a confounder) but at the same time 
increase another type of bias (because the variable is 
a collider on a different path that transmits a spurious 
association when the collider is controlled for). Such a 
constellation, which produces what is called butterfly 
bias, can be easily visualized in a DAG. Quite pragmati-
cally, one can gauge which of the two biases is more 
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problematic and then settle for the lesser evil (Ding & 
Miratrix, 2015).

In other cases, it can be genuinely unclear whether 
a given variable is a confounder, collider, or mediator. 
Strong theories that posit clear directional links between 
variables might solve such problems, but in some cases, 
theory might simply indicate that different data are 
needed. For example, if educational attainment, intel-
ligence, and income are measured at only one point in 
time, it is unclear whether intelligence should be con-
trolled for or not—the variable certainly captures con-
founding influences, but at the same time, it also 
capture parts of the “treatment” of education. Reciprocal 
effects seem plausible for many psychological variables, 
and to disentangle causes and effects in such a situa-
tion, one needs data with a higher temporal resolution 
than results from typical psychological designs, which 
often consist of only a few measurement waves. Again, 
thoughtful consideration of the underlying causal web 
might lead to the conclusion that the data at hand are 
not sufficient and that different sampling designs, such 
as intensive time series of repeated measures (Borsboom 
et al., 2012), are needed.

Causal inferences based on observational data 
require researchers to make very strong assumptions. 
Researchers who attempt to answer a causal research 
question with observational data should not only be 
aware that such an endeavor is challenging, but also 
understand the assumptions implied by their models 
and communicate them transparently. In addition, 
instead of reporting a single model and championing 
it as “the truth,” researchers should consider multiple 
potentially plausible sets of assumptions and see how 
assuming any of these scenarios would affect their con-
clusions. This practice of robustness checking is already 
common in some subfields of economics and could 
also improve inference in psychological research (see, 
e.g., Duncan, Engel, Claessens, & Dowsett, 2014, for 
recommendations for developmental research). As a 
positive side effect, performing and reporting multiple 
analyses (i.e. conducting a “multiverse analysis”; Steegen, 
Tuerlinckx, Gelman, & Vanpaemel, 2016) can greatly 
improve transparency and thus facilitate productive and 
open debates.

One could argue that—given the complex nature of 
human behavior—causal modeling of observational data 
might not be worth the hassle, as it requires a great deal 
of effort with respect to both theoretical reasoning and 
data collection and nonetheless results in claims that 
can often be easily challenged. However, this should 
not be a reason to give up the endeavor altogether.

Although properly implemented randomized experi-
ments leave researchers with great confidence in inter-
nal validity, “their meaning and significance for the 

target phenomenon are often questionable” (Rozin, 
2001, p. 12). That is, randomized experiments allow 
researchers to be confident about a cause-effect rela-
tionship with only very few additional assumptions, but 
many more assumptions might be needed to convinc-
ingly argue that this cause-effect relationship is actually 
the one of interest. Which method—randomized experi-
ment, natural experiment, or observational study—is 
suited for drawing a causal inference regarding a spe-
cific research question must be decided on a case-by-
case basis (see also Cartwright’s, 2007, arguments that 
there is no gold standard).

It is instructive to consider cases in which most peo-
ple readily accept causal claims in the absence of ran-
domized experiments. Nowadays, few people doubt the 
effects of tobacco smoking on lung cancer. But in the 
1950s, tobacco lobbyists embraced the idea that a 
genetic predisposition caused both a tendency to smoke 
and lung cancer (Mukherjee, 2010, p. 253). In other 
words, they claimed that there was an unblocked back-
door path. This idea was dispelled not by randomized, 
controlled experiments in humans, but by highly con-
sistent results of observational studies using various 
controls and different sampling designs, experimental 
evidence from rodent studies, and demonstration of a 
plausible mechanism (i.e., inhaled carcinogens corre-
late with visible malignant changes in the lung, which 
in turn correlate with lung cancer; see Mukherjee, 2010, 
for a summary of the history of cancer research).

A plausible mechanism is also what greatly increases 
scientists’ confidence in the causal effect of human 
activity on the climate: Human activity, such as indus-
trial processes, increases the atmospheric concentra-
tions of greenhouse gases. Atmospheric greenhouse 
gases, in turn, warm the Earth’s surface through an 
uncontroversial mechanism, the greenhouse effect (see 
Silver, 2012, p. 374, for this line of argument). And a 
plausible mechanism is also the reason why one does 
not need randomized controlled trials to conclude that 
parachute use during free fall reduces mortality (but cf. 
Smith & Pell, 2003).

Thus, causal inference based on observational data 
is not a lost cause per se—indeed, in combination with 
additional knowledge from the relevant domain, highly 
convincing causal arguments can be made. Further 
research into psychological mechanisms and processes, 
which will frequently involve experimental studies, 
including well-designed surrogate interventions, can 
strengthen the potential of observational data. Likewise, 
observational data can be used to ensure the external 
validity of findings from constrained experimental set-
tings and also hint toward new phenomena that poten-
tially warrant further research. Different research 
designs are neither mutually interchangeable nor rivals, 



40	 Rohrer

but can contribute unique information to help answer 
common research questions. The most convincing 
causal conclusions will always be supported by mul-
tiple designs. As Angrist and Pischke (2010) noted, “In 
the empirical universe, evidence accumulates across 
settings and study designs, ultimately producing some 
kind of consensus” (p. 25).

Appendix: Glossary

Ancestor. A variable that causally affects another vari-
able, influencing it either directly (ancestor → X) or 
indirectly (ancestor → mediator → X). Direct ancestors 
are also called parents.

Arrow. A directed edge, which indicates a direct causal 
effect between two variables.

Back-door path. A noncausal path that connects the 
independent variable of interest with the dependent 
variable of interest.

Blocked path. A path that contains (a) a collider that 
the analysis has not been conditioned on or (b) a non-
collider (confounder or mediator) that the analysis has 
been conditioned on. A blocked path does not transmit 
an association between variables. A path that is not 
blocked is unblocked, or open, and can transmit an 
association.

Causal path. A path that consists only of chains and 
can transmit a causal association if unblocked.

Chain. An elementary causal structure of the form A 
→ B → C (or, in short, A → C). A chain transmits a 
causal effect of A on C. The variable in the middle, B, 
mediates the effect of A on C.

Collider. A variable in the middle of an inverted fork 
(A → collider ← C). A collider blocks a path unless  
the analysis is conditioned on it (or one of its 
descendants).

Conditioning on a variable. The process of introduc-
ing information about a variable into an analysis (Elwert 
& Winship, 2014). This may happen through various 
means of statistical control or through sample 
selection.

Confounder. A variable in the middle of a fork (A ← 
confounder → C).

Descendant. A variable causally affected by another 
variable, either directly (X → descendant) or indirectly 
(X → mediator → descendant). Direct descendants are 
also called children.

Directed acyclic graph (DAG). An abstract structure 
that connects nodes with edges (lines). Every edge is 

an arrow (hence, directed), and directed cycles are not 
allowed (hence, acyclic). Thus, in a DAG, a variable 
cannot causally affect itself.

Fork. An elementary causal structure of the form A ← 
B → C. The variable in the middle, B, is called a con-
founder and can transmit a noncausal association 
between A and C. Conditioning the analysis on B blocks 
this noncausal path.

Inverted fork. An elementary causal structure of the 
form A → B ← C. The variable in the middle, B, is called 
a collider and blocks the path. Conditioning the analysis 
on the collider opens the path, which may then transmit 
a noncausal association.

Mediator. A variable in the middle of a chain (A → 
mediator → C).

Node. A variable in a DAG.

Noncausal path. A path that contains at least one fork 
or inverted fork and can transmit a noncausal associa-
tion if unblocked.

Path. A sequence of edges that connect a sequence of 
nodes. In a DAG for observational data, a path is a 
sequence of arrows connecting variables. The arrows 
of a path need not point in the same direction.
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Prior Versions

Parts of this manuscript are loosely based on two blog posts 
on collider bias and statistical control of mediating variables 
(Rohrer, 2017a, 2017b). An earlier version of this article was 
posted as a preprint on PsyArXiv (https://psyarxiv.com/
t3qub/) and has been updated to reflect the substantial revi-
sions made during the review process.

Notes

1. Knowledge of SEMs is helpful but not necessary to follow the 
discussion in this article.
2. Whether or not one assumes that the psychological constructs 
represented by the variables actually exist might have conse-
quences for the interpretation of causal models; however, this 
topic is outside the scope of this article. Borsboom, Mellenbergh, 
and van Heerden (2003) have provided an informative discus-
sion of the ontological status of psychological constructs, a topic 
that is intrinsically related to questions of causality.
3. If such a causal process unfolds continuously over time, one 
would end up drawing an infinite number of nodes captur-
ing each moment in time. In most cases, it will, of course, not 
be possible to continuously measure variables; but the often 
arbitrary spacing between time points can have a consider-
able influence on estimates, making causal inference even 
more complicated. Continuous time modeling, which lies out-
side of the scope of this article, relates variables measured at 
discrete time points to an underlying continuous model (see, 
e.g., Voelkle, Oud, Davidov, & Schmidt, 2012, for an SEM-based 
approach).
4. The extraordinarily influential role of randomized experi-
ments in testing causal inferences stems from the simple fact 
that if the independent variable is randomly assigned—for 
example, by the flip of a coin—by design it cannot share a 
common cause with the outcome.
5. Accessible introductions to the underlying concept of 
d-separation, which determines whether paths transmit associa-
tion or not, can be found in Hayduk et al. (2003) and, in a very 
brief form, in Thoemmes’s (2015) Appendix A.
6. However, all the considerations I discuss next also hold for 
other common statistical approaches, such as analysis of vari-
ance and analysis of covariance, as most models used by psy-
chologists are simply special cases of generalized linear models.
7. This example of genetic confounding is adapted from an 
example mentioned by Turkheimer (2000).
8. This holds only under certain assumptions that would be vio-
lated if, for example, children are placed in “matching” adoptive 
families.
9. Note that this is a thought experiment and is thus uncon-
strained by any considerations of practicality or feasibility.
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