Show the Code
penguins %>% gf_point(body_mass_g ~ flipper_length_mm, colour = ~species)
April 21, 2025
April 26, 2025
library(p5)
library(tibble)
# Create drawings from data frames
squares <- data_frame(
x = c(100, 100, 200, 200),
y = c(50, 150, 50, 150),
w = rep(40, 4),
h = rep(40, 4)
)
squares %>%
p5() %>%
createCanvas(300, 200) %>%
background("#002d72") %>%
rect()
# Draw complex shapes
p5() %>%
createCanvas(200, 200) %>%
background("#DCDCDC") %>%
arc(50, 55, 50, 50, 0, ~HALF_PI) %>%
noFill() %>%
arc(50, 55, 60, 60, ~HALF_PI, ~PI) %>%
arc(50, 55, 70, 70, ~PI, ~ PI + QUARTER_PI) %>%
arc(50, 55, 80, 80, ~ PI + QUARTER_PI, ~TWO_PI)
# Create a sketch piece-by-piece
squares %>%
draw() %>%
fill("#808080") %>%
rect() %>%
sketch(
draw = .,
setup = setup() %>% createCanvas(300, 200)
)
# Create interactions
draw() %>%
background("#F4F8FC") %>%
line(~mouseX, 0, ~mouseX, 200) %>%
sketch(
draw = .,
setup = setup() %>% createCanvas(300, 200)
)
# Let users draw
p5() %>%
createCanvas(400, 300) %>%
background("#F4F8FC") %>%
ellipse(~mouseX, ~mouseY, 30, 30)
# Click to change the brush
setup_ <- setup() %>%
createCanvas(640, 380, ~WEBGL)
draw_ <- draw() %>%
js("
if (mouseIsPressed) {
fill(0);
} else {
fill(255);
}
") %>%
ellipse(~mouseX, ~mouseY, 80, 80)
sketch(setup = setup_, draw = draw_)
Classification is a Machine Learning method that predicts the class or level of a target Qualitative variable, based on several Qualitative and Quantitative predictors.
Consider a dataset that contains a pair of Quantitative predictor variables and a target Qualitative variable.