library(blogdown)library(tidyverse)library(ggformula)###library(LindenmayeR)library(LearnGeom)library(TurtleGraphics)###library(mosaicCalc)# Analytic Calculuslibrary(ambient)# Noise generation in Rlibrary(plot3D)# 3D plots for explanationlibrary(caracas)library(downloadthis)library(knitr)library(kableExtra)## Markdown boiler plate stuff!!# ![An Elephant](elephant.png){#fig-elephant}# This is illustrated well by @fig-elephant.## ### Figure Panel Divs# ::: {#fig-elephants layout-ncol=2}# ![Surus](surus.png){#fig-surus}# ![Hanno](hanno.png){#fig-hanno}# Famous Elephants# :::# Adding download buttons# data that has been read in# {{< downloadthis ../../../../materials/Data/housing_train.csv dname="house_prices" label="Download the House Prices Dataset" icon="database-fill-down" type="info" >}}# existing file# {{< downloadthis Orange/grouped-summaries.ows dname="grouped_summaries" label="Download the Orange Workflow" icon="database-fill-down" type="info" >}}
# Create three points, to make a triangleP1<-c(-5, 0)# pointsP2<-c(5, 0)P3<-c(0, 10)# Parameters for a Koch Fractal# Iterative Functionangle<-60# Angle of new linesegmentscut1<-1/3# location along existing line segmentcut2<-2/3# location along existing line segmentf<-1# Scale factor. Positiveit<-6FractalSegment(P1, P2, angle, cut1, cut2, f, it)FractalSegment(P1, P3, -60, cut1, cut2, f, it)FractalSegment(P3, P2, -60, cut1, cut2, f, it)
Batty, M. and Longley, P. A. (1994) “Fractal Cities: A Geometry of Form and Function”, London: Academic Press, 1994.
Wang H, Luo S, Luo T. Fractal characteristics of urban surface transit and road networks: Case study of Strasbourg, France. Advances in Mechanical Engineering. 2017;9(2). doi:10.1177/1687814017692289