Applied Metaphors: Learning TRIZ, Complexity, Data/Stats/ML using Metaphors
  1. ANOVA - Tyre Brands and Mileage
  • Teaching
    • Data Analytics for Managers and Creators
      • Tools
        • Introduction to R and RStudio
        • Introduction to Radiant
        • Introduction to Orange
      • Descriptive Analytics
        • Data
        • Summaries
        • Counts
        • Quantities
        • Groups
        • Densities
        • Groups and Densities
        • Change
        • Proportions
        • Parts of a Whole
        • Evolution and Flow
        • Ratings and Rankings
        • Surveys
        • Time
        • Space
        • Networks
        • Experiments
        • Miscellaneous Graphing Tools, and References
      • Statistical Inference
        • 🧭 Basics of Statistical Inference
        • 🎲 Samples, Populations, Statistics and Inference
        • Basics of Randomization Tests
        • 🃏 Inference for a Single Mean
        • 🃏 Inference for Two Independent Means
        • 🃏 Inference for Comparing Two Paired Means
        • Comparing Multiple Means with ANOVA
        • Inference for Correlation
        • 🃏 Testing a Single Proportion
        • 🃏 Inference Test for Two Proportions
      • Inferential Modelling
        • Modelling with Linear Regression
        • Modelling with Logistic Regression
        • 🕔 Modelling and Predicting Time Series
      • Predictive Modelling
        • 🐉 Intro to Orange
        • ML - Regression
        • ML - Classification
        • ML - Clustering
      • Prescriptive Modelling
        • 📐 Intro to Linear Programming
        • 💭 The Simplex Method - Intuitively
        • 📅 The Simplex Method - In Excel
      • Workflow
        • Facing the Abyss
        • I Publish, therefore I Am
      • Case Studies
        • Demo:Product Packaging and Elderly People
        • Ikea Furniture
        • Movie Profits
        • Gender at the Work Place
        • Heptathlon
        • School Scores
        • Children's Games
        • Valentine’s Day Spending
        • Women Live Longer?
        • Hearing Loss in Children
        • California Transit Payments
        • Seaweed Nutrients
        • Coffee Flavours
        • Legionnaire’s Disease in the USA
        • Antarctic Sea ice
        • William Farr's Observations on Cholera in London
    • R for Artists and Managers
      • 🕶 Lab-1: Science, Human Experience, Experiments, and Data
      • Lab-2: Down the R-abbit Hole…
      • Lab-3: Drink Me!
      • Lab-4: I say what I mean and I mean what I say
      • Lab-5: Twas brillig, and the slithy toves…
      • Lab-6: These Roses have been Painted !!
      • Lab-7: The Lobster Quadrille
      • Lab-8: Did you ever see such a thing as a drawing of a muchness?
      • Lab-9: If you please sir…which way to the Secret Garden?
      • Lab-10: An Invitation from the Queen…to play Croquet
      • Lab-11: The Queen of Hearts, She Made some Tarts
      • Lab-12: Time is a Him!!
      • Iteration: Learning to purrr
      • Lab-13: Old Tortoise Taught Us
      • Lab-14: You’re are Nothing but a Pack of Cards!!
    • ML for Artists and Managers
      • 🐉 Intro to Orange
      • ML - Regression
      • ML - Classification
      • ML - Clustering
      • 🕔 Modelling Time Series
    • TRIZ for Problem Solvers
      • I am Water
      • I am What I yam
      • Birds of Different Feathers
      • I Connect therefore I am
      • I Think, Therefore I am
      • The Art of Parallel Thinking
      • A Year of Metaphoric Thinking
      • TRIZ - Problems and Contradictions
      • TRIZ - The Unreasonable Effectiveness of Available Resources
      • TRIZ - The Ideal Final Result
      • TRIZ - A Contradictory Language
      • TRIZ - The Contradiction Matrix Workflow
      • TRIZ - The Laws of Evolution
      • TRIZ - Substance Field Analysis, and ARIZ
    • Math Models for Creative Coders
      • Maths Basics
        • Vectors
        • Matrix Algebra Whirlwind Tour
        • content/courses/MathModelsDesign/Modules/05-Maths/70-MultiDimensionGeometry/index.qmd
      • Tech
        • Tools and Installation
        • Adding Libraries to p5.js
        • Using Constructor Objects in p5.js
      • Geometry
        • Circles
        • Complex Numbers
        • Fractals
        • Affine Transformation Fractals
        • L-Systems
        • Kolams and Lusona
      • Media
        • Fourier Series
        • Additive Sound Synthesis
        • Making Noise Predictably
        • The Karplus-Strong Guitar Algorithm
      • AI
        • Working with Neural Nets
        • The Perceptron
        • The Multilayer Perceptron
        • MLPs and Backpropagation
        • Gradient Descent
      • Projects
        • Projects
    • Data Science with No Code
      • Data
      • Orange
      • Summaries
      • Counts
      • Quantity
      • 🕶 Happy Data are all Alike
      • Groups
      • Change
      • Rhythm
      • Proportions
      • Flow
      • Structure
      • Ranking
      • Space
      • Time
      • Networks
      • Surveys
      • Experiments
    • Tech for Creative Education
      • 🧭 Using Idyll
      • 🧭 Using Apparatus
      • 🧭 Using g9.js
    • Literary Jukebox: In Short, the World
      • Italy - Dino Buzzati
      • France - Guy de Maupassant
      • Japan - Hisaye Yamamoto
      • Peru - Ventura Garcia Calderon
      • Russia - Maxim Gorky
      • Egypt - Alifa Rifaat
      • Brazil - Clarice Lispector
      • England - V S Pritchett
      • Russia - Ivan Bunin
      • Czechia - Milan Kundera
      • Sweden - Lars Gustaffsson
      • Canada - John Cheever
      • Ireland - William Trevor
      • USA - Raymond Carver
      • Italy - Primo Levi
      • India - Ruth Prawer Jhabvala
      • USA - Carson McCullers
      • Zimbabwe - Petina Gappah
      • India - Bharati Mukherjee
      • USA - Lucia Berlin
      • USA - Grace Paley
      • England - Angela Carter
      • USA - Kurt Vonnegut
      • Spain-Merce Rodoreda
      • Israel - Ruth Calderon
      • Israel - Etgar Keret
  • Posts
  • Blogs and Talks

On this page

  • Setting up R Packages
  • Introduction
  • Data
  • Download the Modified data
  • Data Dictionary
  • Plot the Data
  • Task and Discussion: ANOVA
    • Model + Table
    • Post-hoc Analysis and Plots
    • Conclusion

ANOVA - Tyre Brands and Mileage

Setting up R Packages

library(tidyverse)
library(mosaic)
library(skimr)
library(ggformula)
library(ggprism) # Interesting Categorical Axes
library(ggridges)
library(supernova)
# devtools::install_github('cttobin/ggthemr')
library(ggthemr)
library(ggsci)

Plot Theme

Show the Code
# Chunk options
knitr::opts_chunk$set(
  fig.width = 7,
  fig.asp = 0.618, # Golden Ratio
  # out.width = "80%",
  fig.align = "center"
)
##
## https://stackoverflow.com/questions/36476751/associate-a-color-palette-with-ggplot2-theme
##
my_colours <- c("#fd7f6f", "#7eb0d5", "#b2e061", "#bd7ebe", "#ffb55a", "#ffee65", "#beb9db", "#fdcce5", "#8bd3c7")
my_pastels <- c("#66C5CC", "#F6CF71", "#F89C74", "#DCB0F2", "#87C55F", "#9EB9F3", "#FE88B1", "#C9DB74", "#8BE0A4", "#B497E7", "#D3B484", "#B3B3B3")
my_greys <- c("#000000", "#333333", "#666666", "#999999", "#cccccc")
my_vivids <- c("#E58606", "#5D69B1", "#52BCA3", "#99C945", "#CC61B0", "#24796C", "#DAA51B", "#2F8AC4", "#764E9F", "#ED645A", "#CC3A8E", "#A5AA99")

my_bolds <- c("#7F3C8D", "#11A579", "#3969AC", "#F2B701", "#E73F74", "#80BA5A", "#E68310", "#008695", "#CF1C90", "#f97b72", "#4b4b8f", "#A5AA99")

font <- "Roboto Condensed"
mytheme <- theme_classic(base_size = 14) + ### %+replace%    #replace elements we want to change

  theme(
    text = element_text(family = font),
    panel.grid.minor = element_blank(),
    # text elements
    plot.title = element_text(
      family = font,
      face = "bold",
      hjust = 0, # left align
      # vjust = 2 #raise slightly
      margin = margin(0, 0, 10, 0)
    ),
    plot.subtitle = element_text(
      family = font,
      hjust = 0,
      margin = margin(2, 0, 5, 0)
    ),
    plot.caption = element_text(
      family = font,
      size = 8,
      hjust = 1
    ),
    # right align

    axis.title = element_text( # axis titles
      family = font, # font family
      size = 10
    ), # font size
    axis.text = element_text( # axis text
      family = font, # axis family
      size = 8
    ) # font size
  )
theme_av <- list(
  mytheme,
  scale_colour_manual(values = my_bolds, aesthetics = c("colour", "fill"))
)

Introduction

This is a dataset pertaining to tyres from different companies and their lifetime mileages.

Data

ABCDEFGHIJ0123456789
Brands
<fct>
Mileage
<dbl>
Apollo32.99800
Apollo36.43500
Apollo32.77700
Apollo37.63700
Apollo36.30400
Apollo35.91500
Apollo34.70000
Apollo32.37900
Apollo33.63100
Apollo36.41900
Next
123456
Previous
1-10 of 60 rows

Download the Modified data

Data Dictionary

NoteQuantitative Variables

Write in.

NoteQualitative Variables

Write in.

NoteObservations

Write in.

Plot the Data

Task and Discussion: ANOVA

  1. Complete the pre-analysis steps for ANOVA

Write in.

Model + Table

  1. Create the ANOVA model
  2. Create the ANOVA table using the supernova package
Call:
   aov(formula = Mileage ~ Brands, data = tyre)

Terms:
                  Brands Residuals
Sum of Squares  256.2908  266.6495
Deg. of Freedom        3        56

Residual standard error: 2.182108
Estimated effects may be unbalanced
 Analysis of Variance Table (Type III SS)
 Model: Mileage ~ Brands

                              SS df     MS      F   PRE     p
 ----- --------------- | ------- -- ------ ------ ----- -----
 Model (error reduced) | 256.291  3 85.430 17.942 .4901 .0000
 Error (from model)    | 266.649 56  4.762                   
 ----- --------------- | ------- -- ------ ------ ----- -----
 Total (empty model)   | 522.940 59  8.863                   

Post-hoc Analysis and Plots

  1. Compute the post-hoc differences in means and plot the pair-wise difference plots

  group_1     group_2       diff pooled_se      q    df  lower  upper  p_adj
  <chr>       <chr>        <dbl>     <dbl>  <dbl> <int>  <dbl>  <dbl>  <dbl>
1 Bridgestone Apollo      -3.019     0.563 -5.358    56 -5.129 -0.909  .0021
2 CEAT        Apollo      -0.038     0.563 -0.067    56 -2.148  2.072 1.0000
3 Falken      Apollo       2.826     0.563  5.015    56  0.716  4.935  .0043
4 CEAT        Bridgestone  2.981     0.563  5.291    56  0.871  5.091  .0024
5 Falken      Bridgestone  5.845     0.563 10.373    56  3.735  7.954  .0000
6 Falken      CEAT         2.863     0.563  5.082    56  0.754  4.973  .0037

Conclusion

  1. State a conclusion about the effect of Brands on Mileage.

Write in.

Back to top

License: CC BY-SA 2.0

Website made with ❤️ and Quarto, by Arvind V.

Hosted by Netlify .